
CS106B Handout #17
Winter 07-08 Januray 28, 2008

Section Handout #3

Problem 1: Set Callbacks
1. When using a Set to store user-defined types, it is the client's responsibility to write the
appropriate comparison callback and pass that function to the Set constructor. The
comparison callback also allows the client to customize how entries are compared (and
thus control the order they are returned by the iterator) as well as determining which
entries will be coalesced as duplicates.

a) You're building an address book and plan on using a Set to store the entries. Each entry
is represented by this structure:

struct entryT {
 string firstName;
 string lastName;
 string phoneNumber;
};

Write a comparison callback that compares entries using last name as the primary key
and first name as the secondary key. Show the necessary declaration for creating a Set of
entryT using this callback.

Given the above setup, what happens if you have two friends with the same first and last
name?

b) You plan on using a Set to store a collection of strings. You wish to treat "Word" and
"word" as the same element The default comparison function for Set works on strings,
but it compares case-sensitively. Write a comparison callback that instead compares
strings without regard to case and use it to declare a Set of string which operates case-
insensitively.

Problem 2: Maps
You are writing a program to manipulate a geographic map of major world cities. You
have a list of city names and their coordinates. When a user clicks on a point, you want to
report what city is there. To efficiently support this operation, you plan to use a Map to
associate a pointT with the name of the city at that point. However, Maps require that the
keys be of string type. Brainstorm a way to resolve this apparent incompatibility and
complete the code started below to load the Map with city data.

struct pointT {
int x, y;

};

struct cityT {
string name;

pointT coordinates;
};

Vector<cityT> cities = ...

// complete from here to show loading Map with city data

Problem 3: Cartesian Products
The French mathematician Rene Descartes invented the notion of a “Cartesian product”
of sets, defined as follows:

Let A and B be sets. The Cartesian product of A and B, is the set of all pairs (a,
b) where a is a member of set A and b is a member of set B. The pair (a, b) is
called an ordered pair, and will be defined in our solution by the following struct:

struct pairT
{

 string first, second;
};

Write a function to compute the cartesian product of two sets of strings sets:

Set<pairT> CartesianProduct(Set<string> & one, Set<string> & two);

For example, the Cartesian Product of {"A", "B", "C"} and {"X", "Y"} is:

{("A", "X"), ("A", "Y"), ("B", "X"), ("B", "Y"), ("C", "X"), ("C",
"Y")}

You will also need to write an appropriate PairCmpFn that compares two pairTs.

Problem 4: Cannonballs
Suppose that you have somehow been transported back to 1777 and the Revolutionary
War. You have been assigned a dangerous reconnaissance mission: evaluate the amount
of ammunition available to the British for use with their large cannon which has been
shelling the Revolutionary forces. Fortunately for you, the British—being neat and
orderly—have stacked the cannonballs into a single pyramid-shaped stack with one
cannonball at the top, sitting on top of a square composed of four cannonballs, sitting on
top of a square composed of nine cannonballs, and so forth. Unfortunately, however, the
Redcoats are also vigilant, and you only have time to count the number of layers in the
pyramid before you are able to escape back to your own troops. To make matters worse,
computers will not be invented for at least 150 years, but you should not let that detail get
in your way. Your mission is to write a recursive function Cannonball that takes as its
argument the height of the pyramid and returns the number of cannonballs therein.

int Cannonball(int height);

Problem 5: ReverseString
Given a string, create a function ReverseString that returns the string in reverse order.
Consider both recursive and iterative techniques for solving this problem. Which one is
easier to come up with?

string ReverseString(string str);

Problem 6: GCD
The greatest common divisor (g.c.d.) of two nonnegative integers is the largest integer
that divides evenly into both. In the third century B.C., the Greek mathematician Euclid
discovered that the greatest common divisor of x and y can always be computed as
follows:

If x is evenly divisible by y, then y is the greatest common divisor. Otherwise, the
greatest common divisor of x and y is always equal to the greatest common
divisor of y and the remainder of x divided by y.

Use Euclid's insight to write a recursive function int GCD(int x, int y) that
computes the greatest common divisor of x and y.

Problem 7: Old-Fashioned Measuring
I am the only child of parents who weighed, measured, and priced
everything; for whom what could not be weighed, measured, and
priced had no existence.

—Charles Dickens, Little Dorrit, 1857

In Dickens’s time, merchants measured many commodities using weights and a two-pan
balance—a practice that continues in many parts of the world today. If you are using a
limited set of weights, however, you can only measure certain quantities accurately.

For example, suppose that you have only two weights: a 1-ounce weight and a 3-ounce
weight. With these you can easily measure out 4 ounces, as shown:

It is somewhat more interesting to discover that you can also measure out 2 ounces by
shifting the 1-ounce weight to the other side, as follows:

Write a recursive function

bool IsMeasurable(int target, Vector<int> & weights)

that determines whether it is possible to measure out the desired target amount with a
given set of weights. The available weights are stored in the int vector weights. For
instance, the sample set of two weights illustrated above could be represented using the
following code:

Vector<int> sampleWeights;
sampleWeights.add(1);
sampleWeights.add(3);

Given this vector, the function call

IsMeasurable(2, sampleWeights)

should return true because it is possible to measure out 2 ounces using the sample
weight set as illustrated in the preceding diagram. On the other hand, calling

IsMeasurable(5, sampleWeights)

should return false because it is impossible to use the 1- and 3-ounce weights to add up
to 5 ounces.

The fundamental observation you need to make for this problem is that each weight in the
vector can be either:
1. Put on the opposite side of the balance from the sample
2. Put on the same side of the balance as the sample
3. Left off the balance entirely

If you consider one of the weights in the vector and determine how choosing one of these
three options affects the rest of the problem, you should be able to come up with the
recursive insight you need to solve the problem.

Problem 8: List Mnemonics
On the standard Touch-Tone™ telephone dial, the digits are mapped onto the alphabet
(minus the letters Q and Z) as shown in the diagram below:

In order to make their phone numbers more memorable, service providers like to find
numbers that spell out some word (called a mnemonic) appropriate to their business that
makes that phone number easier to remember. For example, the phone number for a
recorded time-of-day message in some localities is 637-8687 (NERVOUS).

Imagine that you have just been hired by a local telephone company to write a function
ListMnemonics that will generate all possible letter combinations that correspond to a
given number, represented as a string of digits. For example, if you call
ListMnemonics("723") your program should generate the following 27 possible letter
combinations that correspond to that prefix:

PAD PBD PCD RAD RBD RCD SAD SBD SCD
PAE PBE PCE RAE RBE RCE SAE SBE SCE
PAF PBF PCF RAF RBF RCF SAF SBF SCF

The function declaration is listed below:

void ListMnemonics(string str);

